An Alternative Synthetic Route to 3H-Azepines: Thermal lsomerization of 2,4- and 3,5-Di-t-butyl-3a,Sa-di hydro-3H-cyclobuta[blpyrroles

Kyosuke Satake," Hidekazu Saitoh, Masaru Kimura, and Shiro Morosawa

Department of Chemistry, Faculty of Science, Okayama University, Tsushima-Naka 3- 1- I, Okayama 700, Japan

Di-t-butyl derivatives of 3a,5a-dihydro-3H-cyclobuta[b]pyrroles, synthesized from photoisomers of 1H-azepine derivatives (Dewar azepines), isomerized thermally **to** 3H-azepines.

The intramolecular insertion reaction of phenylnitrene in nucleophilic media has been considered a general synthetic method for 3H-azepine derivatives **(1).1** The resulting 3Hazepines, however, possess necessarily a strongly electrondonating functional group on the ring which may hinder study of the 3H-azepine system *per* **se.**

Recently, Vogel reported the formation of 3H-azepine **(2)** from methyl **1H-azepine-1-carboxylate** under fairly sophisticated conditions? We report here an alternative route to $3H$ -azepines from methyl $1H$ -azepine-1-carboxylate derivatives *via* thermal isomerization of 3a,Sa-dihydro-3H-cyclobuta[b]pyrrole derivatives.

The Dewar azepines (4a and b) (methyl 3,5- and 2,4-di-tbutyl-3a,5a-dihydro-1H-cyclobuta[b]pyrrole-1-carboxylates)† were obtained by irradiation of the corresponding 1H-azepine derivatives **(3a** and **b)3** in methanol with a 450 W high-pressure mercury lamp through a Pyrex filter, in 87 and 81% yields, respectively.4 The products were demethoxycarbonylated in butanol with potassium hydroxide as follows. When a butanolic solution of an equimolar mixture of potassium hydroxide and the Dewar azepine **(4a** or **b)** was heated for 15 min at 120"C, carbon dioxide was liberated. When the reaction was complete, the butanol was evaporated off. 3,5-Di-t-butyl-3a ,5a-dihydro-3H-cyclobuta[blpyrrole **(5a)\$** was obtained from the ethereal extract of the neutralized reaction mixture with dilute hydrochloric acid as colourless prisms (m.p. 46-47 "C), in 42% yield. 2,4-Di-t-butyl-3a,Sa-dihydro-3Hcyclobuta[b]pyrrole **(5b)** was isolated as a pale yellow oil in 45% yield by extraction with ether of the alkaline reaction mixture diluted with water. The difference in extractability of **(5a)** and **(5b)** suggests a greater acidity of the C-3 proton of **(5a)** than of **(5b)**. On the basis of the Karplus equation⁵ for the torsion angles of vicinal protons, the observed coupling constant (3.3 Hz) between the C-3 and C-3a protons in **(5a)** supports the view that the t-butyl group and the C-3a proton are cis-oriented. Accordingly, the corresponding anion **(8)** may be stabilized because of the avoidance of steric repulsion between the large t-butyl group and the cis-vicinal C-3a proton. The energy of stabilization appears to be an important factor in increasing the acidity of the C-3 proton. The structures of these compounds were further confirmed as imines by i.r. spectra $(v_{\text{max}}$ 1605 and 1615 cm⁻¹; N=C

t All new compounds described here gave satisfactory spectroscopic and analytical data.

 $\frac{1}{4}$ *Spectral data* for (5a): i.r. (Nujol; cm⁻¹) 1605; δ_H (500 MHz; CDCl₃) 0.89 (s, 9H), 1.04 (s, 9H), 2.27 (dd, $J3.3$ and 2.5 Hz, 1H), 2.69 (t, $J3.3$ Hz, 1H), 4.91 (m, 1H), 5.72 (s, 1H), and 7.43 (s, 1H); δ_C (22.5 MHz; **(d),** 168.3 (s), and 168.6 (d); U.V. (EtOH; nm) 255 (log **E** 2.44). **CDC13)** 27.7 **(q),** 28.2 **(q),** 33.1 *(s),* 40.0 (d), 62.1 (d), 78.5 (d), 128.1

For (5b): i.r. (neat; cm⁻¹) 1615; δ_H (500 MHz; CDCl₃) 1.02 (s, 9H), 1.10 (s, 9H), 2.49 (ddd, *J* 18.0, 10.2, and 2.0 Hz, lH), 2.57 (dt, *J* 18.0 **and3.5Hz,1H),3.20(dtd,J10.2,3.5,and1.2Hz,1H),4.71(m,1H),** and 6.05 (s, 1H); δ_c (22.5 MHz; CDCl₃) 28.0 (q), 28.4 (q), 33.5 (s), 34.8 (t), 35.9 (s), 42.1 (d), 74.4 (d), 132.2 (d), 162.8 (s), and 183.7 (s); U.V. (EtOH; nm) 222.5 **(sh)** (log **E** 2.87).

For (6a): i.r (Nujol; cm⁻¹) 1585; δ_H (500 MHz; CDCl₃) 0.79 (ddd, *J* 5.4, 4.8, and 1.7, 1H), 1.10 (s, 9H), 1.21 (s, 9H), 5.18 (dd, J 9.6 and 5.4 Hz, lH), 6.43 (dt, *J* 9.6 and 1.7 Hz, lH), 6.46 (d, *J* 4.8 Hz, lH), and 7.43 (d, *J* 1.7 Hz, 1H); m/z 205 *(M+,* 18%), 190 (48), and 148 (100).

For (6b): i.r. (neat; cm⁻¹) 1600; δ_H (500 MHz; CDCl₃) 1.07 (s, 9H), **l.lO(br.,1H),1.14(s,9H),3.57(br.,2H),5.03(t,J7.0Hz,1H),6.28** (d, J 8.2 Hz, 1H), and 7.29 (d, J 8.2 Hz, 1H); m/z 205 (M^+ , 54%), 190 (57), 163 (81), and 107 (100).

For $(7a)$: i.r. (Nujol; cm⁻¹) 3230 and 1620; δ_H (500 MHz; CDCl₃) 1.16 (s, 9H), 1.28 (s, 9H), 1.29 (dd, J 6.4 and 5.4 Hz, 1H), 5.42 (dd, J 9.3 and 5.4 Hz, 1H), 6.85 (d, J 9.3 Hz, 1H), 7.32 (s, 1H), 7.47 (d, J 6.4 Hz, lH), and 12.29 (br., 1H).

For (7b): i.r. (Nujol; cm⁻¹) 3200 and 1650; δ_H (500 MHz; CDCl₃) **1.13(~,9H),2.54.0(br.,2H),5.29(t,J5.5Hz,lH),7.15(d,39.5** Hz, lH), and 7.30 (d, *J 9.5* Hz, 1H) (N+ *H* not apparent).

stretching), and by the presence of three kinds of *sp2* carbon signal in both ¹³C n.m.r. spectra.

When a benzene solution $(3.66 \times 10^{-2} \,\text{mol} \, \text{m}^{-1})$ of the imine $(5a)$ or $(5b)$ was heated for 12 h at 120 °C in a sealed glass tube, ring opening occurred to give 3,6-di-t-butyl-3H-azepine **(6a)** as pale yellow crystals $(m.p. 26-27°C)$ in 85% yield, or 2,5-di-t-butyl-3H-azepine **(6b)** as a pale yellow oil in 55% yield. A kinetic study of the thermal isomerization of **(5a)** and **(5b)** was carried out at 130 "C by peak area measurement in 1H n.m.r. (C_6D_6) . Good first-order plots were obtained in both cases and the reaction rates were determined as $3.06 \pm 0.11 \times$ 10^{-4} s⁻¹ for **(5a)** and 4.46 \pm 0.07 \times 10⁻⁵ s⁻¹ for **(5b)**. The electronic spectra of **(6a)** and **(6b),** together with that of the isoelectronic cycloheptatriene, are shown in Figure 1.

Figure 1. Electronic spectra of 3H-azepine derivatives **(6a** and **b)** and cycloheptatriene in ethanol.

Table 1. Assigned 13C n.m.r. data (125 MHz; CDCI,; 6 values) of ring carbon atoms for **(6a), (6b), (7a),** and **(7b),** and shift deviations $(\Delta \delta)$ between non-protonated and protonated species.

Position	(6a)	(7a)	Δò	(6b)	(7b)	Δδ
2	135.6(d)	151.5(d)	$+15.9$	163.5(s)	182.5(s)	$+19.0$
3	54.5(d)	51.8(d)	-2.7	32.4(d)	31.2(t)	-1.2
4	116.3(d)	119.0(d)	$+2.7$	109.9(d)	114.5(d)	$+4.6$
5	125.5(d)	130.2(d)	$+4.7$	147.4(s)	152.0(s)	$+4.6$
6	138.8(s)	155.1(s)	$+16.3$	115.7(d)	130.0(d)	$+14.3$
7	139.1(d)	124.1(d)	-15.0	140.0(d)	127.2(d)	-12.8

Table 2. Formal charge densities of 3H-azepine **(2)** and its protonated derivative **(2)** H+ calculated by MNDO.

13C N.m.r. spectra of both **(6a)** and **(6b)** showed that the system contains five kinds of sp2 carbon (see Table 1). The presence of isomers *(e.g.* 1H-azepine or azanorcaradiene) was excluded by both 1H and 13C n.m.r. spectra. The C-3 proton signals of **(6b)** appeared at **6** 1.10 and 3.57, each as a slightly broadened peak, and that of **(6a)** appeared as a sharp triple doublet peak at **6** 0.79 at 25 "C. The corresponding protons of (2) resonated at δ *ca.* 2.3.² Steric hindrance due to the two t-butyl groups on the ring may raise the activation energy for the ring inversion $[(6) \rightleftharpoons (6')]$. The 3H-azepines **(6a and b)** gave protonated species **(7a** and **b)** as colourless prisms [m.p. 114 and 145 **"C** (decomp.), respectively] in quantitative yield, when treated with hydrogen tetrafluoroborate in acetonitrile. The 13C n.m.r. chemical shifts of **(6a), (6b), (7a),** and **(7b)** were assigned by means of heteronuclear (13C-1H) J-correlated two-dimensional n.m.r. (HETCOR) and are listed in Table 1, along with incremental or decremental protonation values $(\Delta \delta)$. The $\Delta \delta$ values for $(6a)/(7a)$ and $(6b)/(7b)$ showed a fairly good correlation. These assignments were in accord with the result of theoretical calculations of formal charge densities for the 3H-azepine **(2)** and its protonated derivative $(2)H⁺$ by MNDO (Table 2).⁶ Differences in calculated formal charges between **(2)** and **(2)** H^+ are similar to the $\Delta\delta$ values, especially at C-2, C-6, and C-7.

We thank the SC-NMR Laboratory of Okayama University for 500 MHz 1H n.m.r. and 125 MHz 13C n.m.r. measurements.

Received, 29th March 1988; Corn. 8101274A

References

- 1 R. Huisgen and M. Appl, *Chem. Ber.,* 1958,91, 1; R. **J.** Sundberg, **S.** R. Suter, and **M.** Brenner, *J. Am. Chern. SOC.,* 1972,94,513; M. Masaki, K. Fukui, and J. Kita, *Bull. Chern. SOC. Jpn.,* 1977, **50,** 2013; R. Purvis, R. K. Smalley, **W.** A. Strachan, and H. Suschitzky, *J. Chem. SOC., Perkin Trans. I,* 1978,191; R. Purvis, R. K. Smalley, H. Suschitzky, and M. A. Alkhader, *ibid.,* 1984,249.
- 2 **E.** Vogel, H-J. Altenbach, J-M. Drossard, H. Schmickler, and **H.** Stegelmeier, *Angew. Chem., Int. Ed. Engl.,* 1980, 19, 1016.
- 3 T. Kumagai, K. Satake, K. Kidoura, and T. Mukai, *Tetrahedron Lett.,* 1983,24,2275; K. Satake, T. Kumagai, and T. Mukai, *Chem. Lett.,* 1983, 743.
- 4 L. A. Paquette and **J.** H. Barrett, *J. Am. Chem. SOC.,* 1966, **88,** 1718.
- *5* M. Karplus, *J. Chern. Phys.,* 1959,30,11; *J. Am. Chem.* **SOC.,** 1963, *85,* 2870.
- 6 M. **J. S.** Dewar and **W.** Thiel, *J. Am. Chem. SOC.,* 1977,99, 4899.